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Abstract— State-of-the-art lidar panoptic segmentation (LPS)
methods follow “bottom-up” segmentation-centric fashion
wherein they build upon semantic segmentation networks by
utilizing clustering to obtain object instances. In this paper, we
re-think this approach and propose a surprisingly simple yet
effective detection-centric network for both LPS and tracking.
Our network is modular by design and optimized for all aspects
of both the panoptic segmentation and tracking task. One of the
core components of our network is the object instance detection
branch, which we train using point-level (modal) annotations,
as available in segmentation-centric datasets. In the absence of
amodal (cuboid) annotations, we regress modal centroids and
object extent using trajectory-level supervision that provides
information about object size, which cannot be inferred from
single scans due to occlusions and the sparse nature of the lidar
data. We obtain fine-grained instance segments by learning to
associate lidar points with detected centroids. We evaluate our
method on several 3D/4D LPS benchmarks and observe that our
model establishes a new state-of-the-art among open-sourced
models, outperforming recent query-based models.

I. INTRODUCTION

Lidar panoptic segmentation (LPS) is the task of labeling
all 3D points with distinct semantic classes and instance IDs.
This is directly relevant to online streaming robot operation,
as robots need to be aware of both scene semantics and
surrounding dynamic objects in order to navigate safely.

While state-of-the-art 3D detection and tracking methods
detect objects in top-down fashion (Fig. 1, center) and
regress full object extent and orientation/velocity [1], [2],
[3], [4], lidar instance and panoptic segmentation (Fig. 1, left)
follow “bottom-up” segmentation-centric philosophy [5], [6],
[7], [8], [9], that does not require reasoning about the full
extent of 3D bounding boxes. Instead, these segmentation-
centric first perform per-point semantic classification and
then learn to group points corresponding to thing classes
into instances in a bottom-up fashion.

In this paper, we question the established narrative that
bottom-up grouping is the only design pattern for LPS
and propose MOST (MOdal Segmentation and Tracking), a
surprisingly simple yet effective detection-centric approach
for lidar panoptic segmentation [10] and tracking [5]. Con-
cretely, we base our method on CenterPoint [1], designed for
top-down lidar-based 3D object detection. As in CenterPoint,
we first encode a point cloud sequence using a sparse 3D
convolutional backbone [2], [11], [1], [12] and flatten the
bottleneck layer into a bird’s eye view (BEV) representation
of the point cloud that we use to detect objects as points. To
obtain dense, per-point semantic interpretation and instance
interpretation of point clouds, we add a 3D decoder head
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Fig. 1: State-of-the-art LPS methods (left) learn to group
points in a bottom-up fashion, while state-of-the-art 3D
object detectors (center) detect objects as amodal centers
in the bird’s-eye representation of the scene, followed by
amodal 3D bounding box regression. In this paper, we re-
purpose the latter for the former. Our method in parallel clas-
sifies points (semantic segmentation), detect modal instance
centers (modal instance recognition) and their velocities
(modal instance tracking).

to our network that un-projects this representation and up-
samples it back to the original resolution to perform per-
voxel semantic classification. While 3D bounding boxes
(c.f., [1]) can directly be regressed from per-point bottleneck
features, necessary fine-grained details needed for point-wise
classification and instance segmentation are lost. Therefore,
inspired by the instance segmentation branch of modern
two-stage instance segmentation methods, we add a second-
stage instance segmentation network that determines the
membership of points to their respective instance centers pro-
vided by the instance recognition branch. Finally, we obtain
spatio-temporal instance labels by additionally learning to
regress modal offset vectors used for scan-to-scan instance
association [1].

The motivation for this design is two-fold. Firstly, LPS
methods should maximize all aspects of the panoptic seg-
mentation and tracking task, i.e., (i) object recognition, (ii)
instance segmentation, (iii) per-point semantic classification,
and (iv) tracking, all explicitly captured via different modules
in our network, supervised with corresponding loss functions.
Second, this network is modular by design – while object
detection, point classification, instance segmentation, and
velocity regression components all share a common fea-
ture extractor, different components are disentangled. This,
in principle, allows us to investigate the performance of
each module separately, which is important for model in-
terpretability that is crucial in robotics applications. Impor-
tantly, such a model can be trained in the future on multiple
datasets with different levels of supervision (as densely-
labeled data is expensive to obtain), or replace different



modules with stronger counterparts to boost the performance
further.

Importantly, 3D detectors, such as CenterPoint, used as
a base for our model, rely on amodal 3D bounding box
supervision that enclose the full extent of the object, not
only the visible portion. Such labels are not necessarily
available in segmentation-centric semantic/panoptic segmen-
tation datasets [13], [10].1 To remedy this, we show we
can leverage track-level (temporal) information to reason
about the full extent of objects during the network training,
and, as our experiments confirm, we alleviate the need for
amodal labels. From this perspective, our method MOST
marries object instance recognition and semantic segmen-
tation in a single modular network suitable for 3D and 4D
lidar panoptic segmentation and can be trained solely from
temporal point-level (modal) supervision. This makes our
method versatile enough for a thorough evaluation on multi-
ple benchmarks for 3D/4D LPS on Panoptic nuScenes [14]
and SemanticKITTI [13], [10] datasets.

In summary, (i) we propose a 3D/4D lidar segmenta-
tion network that unifies per-point semantic segmentation
with modal object recognition and tracking in a single
network. We (ii) detect instances via modal point-based
temporal supervision and segment them with our novel bi-
nary instance segmentation network that determines point-to-
detection membership based on BEV and per-point semantic
features. Finally, we (iii) show the effectiveness of our
method on various benchmarks for 3D/4D LPS. This con-
firms that our top-down approach based on modal recognition
is highly effective for both 3D and 4D lidar panoptic segmen-
tation and may directly impact design patterns used in future
developments in this field of research. Our code, along with
experimental data, is available at https://mostlps.github.io.

II. RELATED WORK

In this section, we summarize relevant work in 3D object
detection, tracking, and semantic and panoptic segmentation
for lidar point clouds.

Semantic segmentation. Advances in deep representation
learning on unordered point sets [15] enable direct encoding
of raw, unstructured point clouds to estimate fine-grained
per-point semantic labels [15], [16], [17], [18]. Alternatively,
several methods [19], [20], [21], [22], [23], [24] operate on
a spherical projection of point cloud (i.e., range images),
and provide an excellent trade-off between accuracy and
efficiency, important in robotics scenarios. State-of-the-art
methods rely on voxel grids in conjunction with sparse con-
volutions [25], [26]. To efficiently encode sparse lidar point
clouds, Cylinder3D [12] performs a cylindrical partition and
proposes asymmetrical 3D convolution networks, followed
by point refinement. We similarly adopt a sparse voxel grid-
based backbone for point-based classification, a sub-task of
panoptic segmentation.

1With exception of nuScenes, which also includes amodal 3D object
detection labels.

Panoptic segmentation. Seminal methods for lidar panoptic
segmentation follow a top-down approach inspired by the
early image-based baselines [27]. These approaches train
separate networks for semantic segmentation and object
detection, followed by heuristic result fusion [10]. However,
recent trends show that in the lidar domain, bottom-up,
methods [28], [29], [30], [31], [5], [6], [7], [8], [32], includ-
ing recent query-based networks [33], obtain state-of-the-art
results. Are bottom-up methods based on point grouping and
cross-attention de-facto go-to approaches for lidar panoptic
segmentation? We suggest this is not necessarily the case.

4D lidar panoptic segmentation. Recently introduced 4D
lidar panoptic segmentation [5], [14] extends lidar panop-
tic segmentation to the temporal domain, which requires
sequence-level understanding. 4D-PLS [5] poses this task as
bottom-up spatio-temporal point grouping, while MOPT [34]
and CA-Net [35] segment instances in individual scans and
associate them across time. Our proposed method is flexible
and can generalize to utilize either single-scan or a multi-scan
lidar sweep for both 3D and 4D lidar panoptic segmentation
in one single unified network.

(A)modal object localization. Amodal bounding boxes (in
2D or 3D) encapsulate the full extent of the object, regardless
of whether the full object is visible or not. This approach has
origins in object detection [36] and requires the hallucination
of bounding boxes during the annotation process. Recent
works on 3D object detection ([1], [3], [11], [2], [37])
specifically utilizing amodal bounding boxes. Boxes can be
hallucinated by annotators [36], obtained via linear interpo-
lation in sequences [38] or in 3D using SLAM/structure from
motion [39]. Alternatively, the recognition task can be posed
as localization of the visible portion of the object (modal
recognition), common in segmentation-centric tasks [40],
[41], [13]. Modal annotations do not require hallucination of
unobserved regions and are thus less sensitive to localization
errors and less expensive in terms of annotation costs. In this
paper, we demonstrate using modal annotations can achieve
competitive performance compared to existing works built
on amodal annotations.

III. MOST: MODAL SEGMENTATON AND TRACKING

In this section, we present MOST (MOdal Segmentation
and Tracking) for lidar panoptic segmentation of point clouds
and point cloud sequences. Lidar panoptic segmentation
methods must predict semantic class and a unique instance
identity label for each point in a point cloud (sequence). This
task is especially challenging in the temporal domain because
objects may become occluded or may exit or (re)-enter the
sensing area. We first cover an overview of MOST, followed
by a discussion of all key components.

Overview. A visual overview of MOST is presented in
Fig. 2. We base our network for lidar panoptic segmentation
on an encoder-decoder-based U-net architecture [42]. In par-
ticular, we build on a sparse voxel grid-based backbone [11],
which encodes points with a shared multi-layer perceptron
(MLP), and accumulates encoded points in voxels. We then

https://mostlps.github.io
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Fig. 2: MOST overview. We accumulate a point cloud sequence and encode it using a voxel grid-based encode-decoder
backbone (c.f., [11], [12]). After accumulating encoded points in a 3D voxel grid, (a) we down-sample the volume (via
sparse 3D convolutions and pooling layers), and flatten the bottleneck layer along height-axis to obtain BEV representation
(followed by 2D convolutional layers, similar to [1]). We use this representation to detect objects as (modal) points and
regress (modal) offsets for temporal association. Our decoder (b) consists of several up-sampling layers to obtain fine-frained,
voxel-level semantic predictions. Our instance segmentation network, PointSegMLP (c) performs binary classification within
regions of interest (RoI) centered around predicted centers to obtain object instances. (d) PointSegMLP utilizes point and
center features as input to produce panoptic segmentation results.

apply several 3D sparse convolution layers to obtain a down-
sampled BEV representation of the scene (Fig. 2a), i.e.,
the bottleneck layer. Next, we detect object instances via
the modal instance detection branch on top of the BEV
representation. In parallel, our decoder upsamples the bot-
tleneck layer back to the original voxel grid resolution via a
series of 3D upsampling layers to obtain voxel-level semantic
predictions (Fig. 2b). Finally, our instance segmentation
network, PointSegMLP (Fig. 2c), determines which points
belong to detected instances. To this end, PointSegMLP
classifies points within instance-specific regions of interest
(RoIs) centered around detected instances leading to panoptic
segmentation predictions.

Network architecture. The input to our network is a
point cloud I t = {(x,y,z, intensity), . . .} ∈ N ×R4, where
N denotes the number of points. We accumulate input point
clouds over a time window [t−δ t, t] to obtain 4D point cloud
I [t−δ t,t] ∈ N′×R5, wherein the last dimension encodes the
relative time δ t. We encode points using a MLP to obtain
per-point features F point , which we accumulate in a regular
4D voxel grid RC×H×W×D, where H, W , D are dimensions
of the bounding volume and C is the channel dimension.
This 4D multichannel feature grid is processed with 3D
convolutional encoders and decoders, following the sparse
convolutional backbone of VoxelNet [11], which has proven
successful for 3D object detection [2], [11], [1] and semantic
segmentation [12].

For the modal detection branch, we flatten voxel features
along their height to obtain a BEV feature map Fbev ∈
RC′×W ′×D′

. We then apply 2D convolutional layers to reduce
the channel dimension to K output classes, followed by
ReLU activation function to obtain modal center heatmaps
Obev

c ∈ RK×W ′×D′
, followed by non-maxima suppression to

obtain a set of detected instances.
To obtain point-precise semantic segmentation, we up-

sample the BEV feature map Fbev via upsampling layers back

to a voxel-grid representation to obtain voxel-level logits
Ovox. In a U-net fashion, we add skip connections from
downsampling layers to capture fine-grained features. We
then classify voxels via the softmax classifier.

Finally, to segment instances corresponding to pre-
dicted centers, we train an instance segmentation network
(PointSegMLP) that predicts point-to-center memberships.
Given a predicted center ĉ ∈ R3, we compute a binary
membership for all points p ∈ RoI(ĉ). To this end, we
concatenate per-point features F point and predicted center
BEV features Fbev for each point-center pair. Next, we use
concatenated features to determine instance memberships
Omem(p, ĉ) ∈ [0,1] for all pairs. We detail all components
of our network in the following paragraphs.

Semantic segmentation. For voxel-level supervision, we
obtain the supervisory signal from the current sweep I t

via majority voting to obtain Y vox ∈ K H×W×D, where K
denotes the set of all classes. Next, we apply per-voxel cross-
entropy (CE) loss on-top of the voxel logits Ovox:

Lseg =CE(Y vox,Ovox). (1)

We note that even though we accumulate raw point clouds
as I [t−δ t,t] as input to the encoder, the loss is only applied
to voxels corresponding to I t . This is done by simply
masking out loss corresponding to voxels in I [t−δ t,t] that
do not belong to the current sweep I t . For point-level
supervision, we utilize a point-refinement network [12]. We
obtain voxel features Ovox at the point level, point features
F point , and BEV features Obev and train a linear layer using
cross-entropy loss. During inference, we assign point-level
predictions Opoint to all points within the voxel.

Modal object instance recognition. Assuming access to
only per-point semantic class and instance IDs for objects,
we represent objects via statistics computed from observed
points. More precisely, for a visible set of points P rep-
resenting an instance, we define modal center c ∈ R3 as



the mean of P , and modal extent r ∈ R3 as the maximum
distance of a point p from c. Intuitively, modal extent
encodes the visible extent of an object. Following [1], we
obtain BEV supervisory signal by constructing K class-wise
center heatmaps Y bev

c ∈ RW ′×D′
. We project modal centers

and modal extents from 3D into the 2D BEV plane. Then,
we place a 2D Gaussian centered at the projected modal
centers with the projected radius as the variance. Since the
projection collapses the center height information, we set
an additional regression target Y bev

h ∈ RW ′×D′
to localize the

object in 3D. We then apply focal loss [43] for thing classes
as in CenterPoint [1] for modal centers heatmaps Obev

c . In
addition we apply an L1 regression loss on height Obev

h :

Ldet = FocalLoss(Y bev
c ,Obev

c )+ |Y bev
h −Obev

h |. (2)

Estimating modal extent r. We first compute the extent
for instances at each time step via shrink-wrapping (SW). To
this end, we estimate tight axis-aligned bounding boxes that
enclose observed points. We compute SW axis-aligned box
at time t as: rt = max{|p− c|, p ∈ P}, where P represents
the set of observed points for this instance.

Intuitively, humans reason about the object’s extent by fus-
ing information from multiple viewpoints. A sensor mounted
on an autonomous vehicle similarly observes objects from
different viewpoints over time. Therefore, we can derive
more accurate object extent estimates r by reasoning about
object size over time. We utilize unique instance IDs,
available in 4D panoptic segmentation datasets [10], [14]
to obtain refined object extent estimates through temporal
supervision. To this end, we simply compute the maxima
of all per-frame extent estimates for an object across time
(MAX) to obtain a more precise estimate compared to naive
SW: r = max{rt}T

t=0. These are then used as target extents
during the modal instance recognition branch training. This
approach is especially beneficial for instances that contain
only a few points—for example, cases where only a vehicle’s
front or rear bumper is visible.

PointSegMLP for instance segmentation. The modal
recognition branch provides object center predictions, while
the semantic decoder independently provides point-wise se-
mantic predictions. The next step is to obtain instance-level
segmentation, i.e., modal point-precise segmentation masks
for detected instances. We tackle instance segmentation by
training a point membership function, PointSegMLP, that de-
termines for each point in the scene which points correspond
to which detected centroids. This is analogous to image-based
two-stage instance segmentation networks [44], that segment
instances via binary classification for each anchor box.

Consider a detected object instance D with center µ̂ and
class k̂. We take all points P = {p ∈ RoI(µ̂, k̂)} as in-range
points, wherein each RoI is constructed from the predicted
modal extents of the detected object. Next, we obtain features
for the detected center and for all in-range points p (see
Fig. 2d). The center features are comprised of its 3D position
µ̂ , semantic class k̂ and BEV features Fbev

µ̂
. The BEV

features Fbev
µ̂

are obtained by first projecting µ̂ onto the

BEV plane, followed by linear interpolation of Fbev features
at the projected point. Similarly, we compute point features
using its 3D position p ∈P , predicted semantic label Opoint

p
and the BEV features Fbev

p for point p. In addition, we
append F point

p features obtained from the backbone. The
obtained center features are concatenated with the point
features to obtain a feature representation for a point-center
pair. Our per-point PointSegMLP, shared across all points,
utilizes the obtained point-center features to determine per-
point-to-center instance membership Omem ∈ [0,1]. The ar-
chitecture boils down to a light-weight MLP comprised of
fully connected layers with batch normalization and ReLU
activation. For supervision, we construct a binary ground
truth membership Y mem, points belonging to an instance D
are assigned 1, and others 0. We train PointSegMLP using
binary cross-entropy loss (BCE):

Lmem = BCE(Y mem,Omem). (3)

Modal panoptic tracking. We follow CenterPoint [1]
and concatenate point clouds before encoding them. Such
spatio-temporal representations can be used to regress offset
vectors v ∈ R2 and to obtain sequence-level lidar panoptic
segmentation through greedy association. The difference,
however, is that we estimate offset vectors using modal labels
only. We construct ground truth velocity offsets Y bev

v for input
point cloud I t using I t−δ t and I t+δ t . For each object,
ground truth velocity offsets are computed through a centered
difference between modal centers i.e., (µ t+δ t −µ t−δ t)/(2δ t).
The velocity offset predictions Obev

v when combined with per-
point 3D panoptic segmentation leads to a unified, single-
network top-down approach to 4D lidar panoptic segmenta-
tion. We train the velocity offset regression head using L1
loss:

Ltrack = |Y bev
v −Obev

v |. (4)

Putting everything together. We train our network by
minimizing the overall training objective, that is composed
of modal detection loss Ldet , semantic segmentation loss
Lseg, instance segmentation loss Lmem, and optionally for
sequences, modal velocity regression loss Ltrack:

Ltotal = Ldet +Lseg +Lmem +Ltrack. (5)

Inference. During inference, we fuse segmentation branch
predictions Ovox, modal center heatmaps Obev, and point-
center memberships Omem to obtain 4D panoptic predictions.
We utilize segmentation labels predicted by the segmen-
tation branch, and instance labels predicted by the modal
centroid membership branch. We summarize the approach
here: using the segmentation branch predictions Ovox, we
assign point-level predictions Opoint to all points within the
voxel. Similarly, we apply non-maximum supression (NMS)
over the predicted center heatmaps Obev to generate predicted
modal centers µ̂ . We then compute the membership of each
point p within the RoI of each center using PointSegMLP,
resolving overlapping RoIs by the most confident center



TABLE I: Different strategies for amodalization: We
compare different methods using the same segmentation
backbone. We start with bottom-up centroid regression, as
done in DS-Net. Naively creating a shrink-wrapped (SW)
modal cuboid and training a top-down object-centric modal
detector already improves performance, with or without
sharing weights between the detection and segmentation
branches. We also explore other ways of generating modal
cuboids, including using a class-wise mean (CWM) cuboid
dimension or taking the max dimension value across time
(MAX). We see MAX performing the best when only modal
annotations are available, while closing the gap with amodal
annotations. The top results are bolded, while the second
best are underlined.

Method PQ PQT h PQSt mIoU mIoUT h mIoUSt

Offset reg. (DS-Net) 68.2 66.1 71.6 75.5 71.8 81.7

Modal Det. (SW), w/o sharing 72.2 71.7 72.9 77.2 74.5 81.7
Modal Det. (SW), w/ sharing 73.8 74.4 73.1 79.7 78.7 81.3

Modal Det. (DSB) 70.1 68.4 72.9 77.6 75.2 81.3
Modal Det. (CWM) 74.2 74.6 73.5 79.7 78.7 81.3
Modal Det. (MAX) 77.1 79.3 73.6 80.3 79.4 81.7

Amodal Det. 78.1 82.7 72.9 79.2 78.8 79.7

û∗ = argmaxû(O
mem(p, û)). Next, we assign the predicted

center label to all points that are its members, and assign a
unique instance id. For all stuff points, we directly utilize the
predicted semantic label. To extend our method to panoptic
tracking, we associate instances across sweeps by using pre-
dicted center velocities Obev

v , following the approach in [1]:
we greedily form tracklets by matching previous-sweep
centers to current sweep centers with subtracted velocity
offsets. Finally, all the instances of an object belonging to a
tracklet are assigned a temporally consistent unique ID.

Implementation details. We train our network in two
stages. In the first stage, we optimize the modal detection
and segmentation branch using Ldet , Lseg, and Ltrack. Next,
we freeze the first stage network and only train the second
stage using a per-point Lmem loss. The first stage network is
trained with Adam optimizer with a learning rate of 1e−3,
with a batch size of 8. For the second stage of training
of PointSegMLP, we utilize SGD optimizer with a learning
rate as 5e−4. The network is trained for a total of 20
epochs. Architecture: the per-point feature extraction layer
and PointSegMLP are simple 4-layer MLPs with BatchNorm
and ReLU layers. The voxel grid encoder downsamples the
input point cloud by a factor of 8, while the decoder upsam-
ples the bottleneck layer back to the original resolution. The
modal detection branch comprises of two 3x3 convolution
layers with ReLU activation layers. We accumulate previous
10 frames. We do not employ any test time augmentation
while reporting our results.

IV. EXPERIMENTAL EVALUATION

In this section, we first summarize our evaluation test-
bed, including datasets, benchmarks and evaluation metrics
used to conduct our experiments (Sec. IV-A). We next ablate
various stages and design decisions of MOST’s network

TABLE II: Different membership functions: We compare
our PointSegMLP with a simple yet surprisingly effective
nearest neighbor heuristic (NN-baseline). As can be seen,
our learning-based PointSegMLP based on 3D positions and
semantic predictions already significantly outperforms the
heuristic. While instance bird’s-eye-view (BEV) features in
isolation do not benefit our model, they further improve
the performance when combined with per-point semantic
features.

Method PQ mIoU Membership Acc (%)

Nearest Neighbor (baseline) 70.9 77.2 76.3
Ours (semantic + geometric) 72.9 77.5 95.4

+ BEV feat. 72.6 77.4 95.0
+ Point feat. 73.8 79.7 95.4

architecture for joint lidar panoptic segmentation and track-
ing (Sec. IV-B). Finally, we outline and discuss official
benchmark results obtained on singe-scan and multi-scan
(4D) lidar panoptic segmentation (Sec. IV-C).

A. Evaluation Test-Bed

Datasets. We evaluate our work using SemanticKITTI [13],
[10] and Panoptic nuScenes [14] datasets, that contain per-
point temporally-consistent semantic and instance labels. Se-
manticKITTI [13], [10] contains 1.5h of lidar scans, recorded
using a 64-beam sensor, and labels for 28 semantic classes.
Panoptic nuScenes [14] contains 1,000 short scenes with a
32-beam sensor. It contains labels for 32 semantic classes,
with a labeling frequency of 2Hz. For both datasets, we
follow the official splits for training/validation and evaluate
our final models on the hidden test set.

Tasks and evaluation metrics. For single-scan (3D) lidar
panoptic segmentation, we report well-established panoptic
quality PQ metric [27], a soft version of the F1-score that
treats thing and stuff classes in a unified manner. Follow-
ing the official evaluation procedure, we set the minimum
number of points on an instance to be 15 for nuScenes
and 50 for SemanticKITTI. We additionally report mean
intersection-over-union (mIoU) [36] that evaluates per-point
semantic segmentation. For multi-scan (4D) lidar panoptic
segmentation, we report (lidar) segmentation and tracking
quality LSTQ [47], [5], evaluated as the geometric mean
between mIoU and point association quality (AQ). AQ
evaluates whether a point was associated with the correct
instance in space and time. For Panoptic nuScenes, we
additionally report the recently introduced panoptic tracking
(PAT) metric, which combines PQ and LSTQ.

B. Ablations

Modal recognition or center-offset regression? We first
study the impact of our top-down modal recognition-based
approach to panoptic segmentation and compare it to a
bottom-up center-offset regression approach by DS-Net [7],
for which code is available. This method predicts center
offsets followed by mean-shift clustering to obtain object
instances. For comparison, we take the identical seman-
tic segmentation network (Cylinder3D [12]), but instead



(a) GT (b) DS-Net (c) NN-Baseline (d) MOST

Fig. 3: Qualitative results: We qualitatively compare the performance as compared to GT labels (Fig. 3a). DS-Net (Fig. 3b)
struggles with correctly segmenting multiple cars, leading to over-segmentation. Our modal detection centric approach
with the nearest neighbor heuristic (NN-baseline, Fig. 3c performs significantly better; however, we cannot correctly
assign/segment fuzzy points. By contrast, our full method, MOST (Fig. 3d), correctly detects and segments cars.

TABLE III: LPS on nuScenes panoptic: MOST is 1st nuScenes val set and 2nd on the test set (1st among open-source
models). The best results are bolded, while the second best are underlined.

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

V
al

id
at

io
n

Panoptic-PHNet [9] 74.7 - 84.2 88.2 74.0 - - 75.9 - - 79.7
DS-Net [7] 51.2 - 59.0 86.1 38.4 43.8 86.7 72.3 84.2 85.0 73.5
GP-S3Net [8] 61.0 67.5 72.0 84.1 56.0 65.2 85.3 66.0 78.7 82.9 75.8
Efficient-LidarPanopticSegmentation [45] 62.0 65.6 73.9 83.4 56.8 68.0 83.2 70.6 83.6 83.8 65.6
PolarSeg-Panoptic [32] 63.4 67.2 75.3 83.9 59.2 70.3 84.1 70.4 83.5 83.6 66.9
MaskPLS [33] 57.7 60.2 66.0 71.8 64.4 73.3 84.8 52.2 60.7 62.4 62.5
Ours 77.1 79.9 86.5 88.6 79.3 87.5 90.3 73.6 84.9 85.7 80.3

Te
st

Panoptic-PHNet [9] 80.1 82.8 87.6 91.1 82.1 88.1 93.0 76.6 86.6 87.9 80.2
Efficient-LidarPanopticSegmentation [45] 62.4 66.0 74.1 83.7 57.2 68.2 83.6 71.1 84.0 83.8 66.7
PolarSeg-Panoptic [32] 63.6 67.1 75.1 84.3 59.0 69.8 84.3 71.3 83.9 84.2 67.0
Ours 76.1 79.5 85.1 88.9 77.4 85.5 90.3 73.9 84.5 86.7 80.4

TABLE IV: LPS on SemanticKITTI: MOST is a close 2nd runner (1st among open-source models). Our method builds
on the same encoder-decoder backbone as DS-Net; however, it significantly improves the results in terms of PQ and mIoU,
thanks to our modal recognition branch and instance segmentation network.

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

V
al

id
at

io
n DS-Net [7] 57.7 63.4 68.0 77.6 61.8 68.8 78.2 54.8 67.3 77.1 63.5

PolarSeg-Panoptic [32] 59.1 64.1 70.2 78.3 65.7 74.7 87.4 54.3 66.9 71.6 64.5
Efficient-LidarPanopticSegmentation [45] 59.2 65.1 69.8 75.0 58.0 68.2 78.0 60.9 71.0 72.8 64.9
GP-S3Net [8] 63.3 71.5 75.9 81.4 70.2 80.1 86.2 58.3 72.9 77.9 73.0
Ours 63.1 70.8 73.1 79.2 68.7 75.7 86.7 58.9 71.2 73.7 69.7

Te
st

Panoptic-PHNet [9] 61.5 67.9 72.1 84.8 63.8 70.4 90.7 59.9 73.3 80.5 66.0
SCAN [46] 61.5 67.5 72.1 84.5 61.4 69.3 88.1 61.5 74.1 81.8 67.7
PolarSeg-Panoptic [32] 54.1 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2 59.5
DS-Net [7] 55.9 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7 61.6
Efficient-LidarPanopticSegmentation [45] 57.4 63.2 68.7 83.0 53.1 60.5 87.8 60.5 74.6 79.5 61.4
MaskPLS [33] 58.2 63.3 68.6 83.9 55.7 61.7 89.2 60.0 73.7 80.0 62.5
GP-S3Net [8] 60.0 69.0 72.1 82.0 65.0 74.5 86.6 56.4 70.4 78.7 70.8
Ours 61.0 66.8 72.0 84.4 58.1 66.0 88.1 63.2 76.3 81.7 66.1

of offset regression and mean-shift clustering, we train a
separate modal instance recognition network, followed by
our proposed instance segmentation network. We refer to this
variant as Modal Det. (SW) w/o sharing in Tab. I. As the se-
mantic segmentation networks are identical, this experiment
highlights the effectiveness of our modal detection branch.
In this setting, we regress tightly-fitting “shrink-wrap (SW)”
bounding boxes derived from segmentation labels. With this
simple approach, we improve by +4 PQ points.

Joint training. Next, we train a single network for joint
semantic segmentation and modal instance recognition and
segmentation (as explained in Sec. III), i.e., Modal Det. (SW)
w/ sharing in Tab. I. This yields PQ score of 73.8 (+0.6),
confirming the benefits of joint training of segmentation and

modal recognition networks.

Amodal recognition? Next, we evaluate the impact of
amodal training on our detection component. Entry Amodal
Det. (Tab. I) refers to a variant that trains the detection branch
using such amodal labels on nuScenes [14] which provides
both segmentation labels and amodal boxes. We obtain PQ
of 78.1, +4.3 points compared to our SW modal baseline.
This is not surprising: amodal labels provide additional
supervisory signals in the form of orientation and full extent
for each instance. This suggests that amodal labels contain
additional useful information that comes with additional
annotation cost. This begs the question, can we close the
gap using only segmentation-level labels?

Closing the gap. While regressing the full extent of the



object is beneficial, we do not have access to this information
(e.g., in SemanticKITTI [13]). Can we do better than naı̈ve
shrink-wrapping baseline (73.8 PQ)? First, we observe this
gap is due to the sensitivity of the modal recognition head
to occlusions and decreasing sensor resolution, resulting in
a large number of instances containing only a few points.
An obvious remedy is to simply drop small boxes (DSB),
i.e., to exclude small tightly-fitting bounding boxes from
training. However, this approach yields 70.1 PQ, likely due
to the exclusion of a large portion of training data. A better
strategy is to replace small boxes with class-wise mean
(CWM) box sizes, which yields 74.2 PQ. Finally, we utilize
the sequential information and compute tightly-fitting boxes
throughout the instance trajectory. Taking max dimension
over time for supervision (MAX) produces PQ of 77.1, which
is reasonably close to full amodal supervision. This implies
that using sequential point-level labels, we can get better
estimates of object extent resulting in better performance.

PointSegMLP. Next, we justify design decisions behind our
instance segmentation network, PointSegMLP, that predicts
binary point-center memberships for each detected object
instance. In addition to reporting standard PQ and mIoU ,
we also evaluate membership accuracy (mem. acc.), which
computes the percentage of points within a given RoI that
have been assigned to the correct center.

We first evaluate the performance of a simple geometric
baseline, denoted as NN-baseline in Tab. II. This method
assigns each point to its nearest semantically-compatible
detected center within the RoI of the detected center. We
conclude that this simple baseline works surprisingly well,
obtaining a PQ of 70.9. However, clearly, there is space for
improvement in terms of mem. acc. (76.3). While most points
can be unambiguously assigned to the nearest instance, a
certain percentage of fuzzy points could be assigned to two
or more instances. This motivates the usage of data-driven
PointSegMLP to perform segmentation.

Next, we compare this baseline to our PointSegMLP
that learns to segment points. In the first variant (denoted
as semantic + geometric), we only utilize the 3D point
coordinates of points and instance centers, along with their
semantic predictions. We observe that just using geometrical
features significantly outperforms the NN-baseline with an
improvement of +19.1 in terms of mem.acc, and this trans-
lates into +2 improvement in PQ. Solely adding bird-eye-
view (BEV) feature (wrt. detected instance) does not improve
the performance; however, adding both instance BEV feature
and fine-grained point features leads to a +0.9 increase in
PQ. We also visualize the results in Fig. 3.

C. Benchmark results

This section compares our method to published state-of-
the-art methods on standard benchmarks for 3D and 4D lidar
panoptic segmentation datasets [13], [14].

Lidar panoptic segmentation. We report the results for
panoptic segmentation in Tab. III (Panoptic nuScenes) and
Tab. IV (SemanticKITTI). We utilize temporal supervised

TABLE V: 4D Lidar Panoptic Segmentation Benchmarks.
Our method is 1st on nuScenes and 3rd on SemanticKITTI.
The top results are bolded, while the second best are
underlined. MOT: tracking-by-detection [48], SFP: scene
flow based propagation [49], PP: PointPillars 3D detector [3].

Method LST Q PAT Sassoc Scls PT Q PQ

Se
m

an
tic

K
IT

T
I RangeNet++ [21] + PP + MOT 35.5 - 24.1 52.4 - -

KPConv [17] + PP + SFP 38.5 - 26.6 55.9 - -
4D-PLS [5] 56.9 - 56.4 57.4 - -
Contrastive Association [35] 63.1 - 65.7 60.6 - -
4D-StOP [50] 63.9 - 69.5 58.8 - -
Ours 60.3 - 57.8 62.8 - -

nu
Sc

en
es

PanopticTrackNet [34] 44.8 45.7 36.7 58.9 51.6 51.7
4D-PLS [5] 57.8 60.5 53.6 62.3 55.6 56.6
E-LPS [45] + Kalman 63.7 67.1 60.2 67.4 62.3 63.6
E-LPT [45] 66.4 70.4 - 69.5 67.5 67.9
Ours 73.2 74.9 66.6 80.4 72.0 76.0

(MAX) for obtaining object targets for the benchmark sub-
mission. We focus this discussion on the test set results and
show results on the validation set for completeness. On the
nuScenes dataset, MOST is the second-best method with
76.1 PQ. Note that we only utilize standard convolution
layers as opposed to proprietary Transformer-based Panoptic-
PHNet [9], so there is potential to replace our lightweight
components with stronger transformer-based counterparts
to achieve better performance. The end-to-end latency of
over system is 169.9ms. Moreover, Panoptic-PHNet [9]
could not be easily extended for sequence-level scene un-
derstanding (ie, tracking), while as we will show next,
MOST can achieve competitive performance on tracking
by simply appending a greedy association module. MOST
outperforms other approaches by a large margin (+13.5
PQ). On Semantic-KITTI, MOST is a close-second obtaining
61.0 PQ, with state-of-the-art being 61.5 PQ. This high-
lights that MOST generalizes well across different datasets.
MOST also performs favorably against recent, query-based
network [33], that extends state-of-the-art image-based ap-
proach, Mask2Former [51] to the lidar domain.

Lidar panoptic tracking. We report the results for 4D lidar
panoptic tracking on SemanticKITTI and nuScenes datasets
in Tab. V. Being a top-down method, MOST can easily
extend to 4D panoptic segmentation through the greedy
association of predicted velocity offsets. On nuScenes, MOST
obtains 73.2 LSTQ and 74.9 PAT on the test set, establishing
new state-of-the-art on this benchmark. MOST improves by
+6.8 LSTQ and +4.5 PAT points over second-best approach,
Efficient-LPT [45]. On Semantic-KITTI, MOST obtains com-
petitive results (60.3 LSTQ) with a simple greedy approach.
These results affirm that MOST is a versatile approach that
performs consistently across different benchmarks, 3D and
4D panoptic segmentation on multiple datasets. We refer the
reader to the accompanying video for qualitative results.

V. CONCLUSIONS

This paper presents a top-down approach to lidar panoptic
segmentation and tracking using only modal annotations.
Our unified network jointly detects objects as modal points
and classifies voxels to obtain per-point panoptic segmenta-
tion predictions. Instances are associated across 4D spatio-



temporal data using learned modal velocity offsets to ob-
tain panoptic tracking predictions. Our method establishes
a new state-of-the-art on Panoptic nuScenes 4D panoptic
segmentation benchmark. We hope that this work will inspire
future developments in recognition-centric methods for lidar
panoptic segmentation and tracking.
Acknowledgments. This project was funded by, in parts, by Sofja Ko-
valevskaja Award of the Humboldt Foundation.
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